Spectral methods for circuit analysis

نویسنده

  • Ognen J. Nastov
چکیده

Harmonic balance (HB) methods are frequency-domain algorithms used for high accuracy computation of the periodic steady-state of circuits. Matrix-implicit Krylov-subspace techniques have made it possible for these methods to simulate large circuits more efficiently. However, the harmonic balance methods are not so efficient in computing steady-state solutions of strongly nonlinear circuits with rapid transitions. While the time-domain shooting-Newton methods can handle these problems, the low-order integration methods typically used with shooting-Newton methods are inefficient when high solution accuracy is required. We first examine possible enhancements to the standard state-of-the-art preconditioned matrix-implicit Krylovsubspace HB method. We formulate the BDF time-domain preconditioners and show that they can be quite effective for strongly nonlinear circuits, speeding up the HB runtimes by several times compared to using the frequency-domain block-diagonal preconditioner. Also, an approximate Galerkin HB formulation is derived, yielding a small improvement in accuracy over the standard pseudospectral HB formulation, and about a factor of 1.5 runtime speedup in runs reaching identical solution error. Next, we introduce and develop the Time-Mapped Harmonic Balance method (TMHB) as a fast Krylov-subspace spectral method that overcomes the inefficiency of standard harmonic balance for circuits with rapid transitions. TMHB features a non-uniform grid and a time-map function to resolve the sharp features in the signals. At the core of the TMHB method is the notion of pseudo Fourier approximations. The rapid transitions in the solution waveforms are well approximated with pseudo Fourier interpolants, whose building blocks are complex exponential basis functions with smoothly varying frequencies. The TMHB features a matrix-implicit Krylov-subspace solution approach of same complexity as the standard harmonic balance method. As the TMHB solution is computed in a pseudo domain, we give a procedure for computing the real Fourier coefficients of the solution, and we also detail the construction of the time-map function. The convergence properties of TMHB are analyzed and demonstrated on analytic waveforms. The success of TMHB is critically dependent on the selection of a non-uniform grid. Two grid selection strategies, direct and iterative, are introduced and studied. Both strategies are a priori schemes, and are designed to obey accuracy and stability requirements. Practical issues associated with their use are also addressed. Results of applying the TMHB method on several circuit examples demonstrate that the TMHB method achieves up to five orders of magnitude improvement in accuracy compared to the standard harmonic balance method. The solution error in TMHB decays exponentially faster than the standard HB method when the size of the Fourier basis increases linearly. The TMHB method is also up to six times faster than the standard harmonic balance method in reaching identical solution accuracy, and uses up to five times less computer memory. The TMHB runtime speedup factor and storage savings favorably increase for stricter accuracy requirements, making TMHB well suited for high accuracy simulations of large strongly nonlinear circuits with rapid transitions. Thesis Supervisor: Jacob K. White Title: Professor of Electrical Engineering

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Comparison Between Electrical Circuit and Finite Element Modeling Methods for Performance Analysis of a Three-Phase Induction Motor under Voltage Unbalance

Induction motor is the most popular load in the industry, it is very important to study about the effects of voltage quality on induction motor performance. One of the most important voltage quality problems in power system is voltage unbalance. This paper evaluates and compares two methods including finite element method (FEM) and equivalent electrical circuit simulation for investigation ...

متن کامل

Recent developments in configuration design and optimization of mineral separation circuits; A Review

The present research reviews two basic approaches for the separation circuit configuration analysis. The first approach is to optimize the circuit configuration. In this method, after a circuit modeling, a variety of search algorithms and mathematical optimization methods are used. Previous works show that this approach has more application in the flotation process. The second approach called t...

متن کامل

Large Amplitude Vibration Analysis of Graphene Sheets as Resonant Mass Sensors Using Mixed Pseudo-Spectral and Integral Quadrature Methods

The present paper investigates the potential application of graphene sheets with attached nanoparticles as resonant sensors by introducing a nonlocal shear deformation plate model. To take into account an elastic connection between the nanoplate and the attached nanoparticle, the nanoparticle is considered as a mass-spring system. Then, a combination of pseudo-spectral and integral quadrature m...

متن کامل

Representing Spectral data using LabPQR color space in comparison to PCA method

In many applications of color technology such as spectral color reproduction it is of interest to represent the spectral data with lower dimensions than spectral space’s dimensions. It is more than half of a century that Principal Component Analysis PCA method has been applied to find the number of independent basis vectors of spectral dataset and representing spectral reflectance with lower di...

متن کامل

.1 Spectral-domain Analysis

1 Nonlinear circuit design methods This chapter presents the most commonly used design techniques for analysing nonlinear circuits , in particular, transistor oscillators. There are several approaches to analyse and design nonlinear circuits, depending on their main specifications. This means an analysis both in the time domain to determine transient circuit behaviour and in the frequency domai...

متن کامل

Thermal Analysis of Convective-Radiative Fin with Temperature-Dependent Thermal Conductivity Using Chebychev Spectral Collocation Method

In this paper, the Chebychev spectral collocation method is applied for the thermal analysis of convective-radiative straight fins with the temperature-dependent thermal conductivity. The developed heat transfer model was used to analyse the thermal performance, establish the optimum thermal design parameters, and also, investigate the effects of thermo-geometric parameters and thermal conducti...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1999